$Id: nokia.txt,v 1.4 2004/01/24 15:35:28 uid68500 Exp $

Document describing protocol used in Nokia phones.

NOTE: this information isn't (and can't be) complete. If you know anything

about features not listed here or you noticed a bug in this list, please

notify us via e-mail. Thank you.

 Frame format for MBUS version 1:

 Request from Computer/Answer from Phone:

 { DestDEV, SrcDEV, FrameLength, MsgType, {block}, id, ChkSum }

 where DestDEV, SrcDEV: 0x00: phone

 0xf8: PC (wakeup msg)

 0xe4: PC (normal msg)

 FrameLength: length of data frame. Maximal 0x78. Longer

 frames are divided into smaller.

 MsgType: see List

 {block}: main frame

 id: request identity number 1..n, incremented after

 the request is accepted

 ChkSum: XOR on frame's all numbers

 Ack from Phone:

 { DestDEV, 0x00, FrameLength, MsgType, {block} , id, ChkSum }

 where DestDEV: taken from original request packet

 FrameLength: 0x7f, when DestDEV = 0xe4

 0x7e, when DestDEV = 0xf8

 MsgType: see List. Present only, when DestDEV = 0xf8

 {block}: main frame. Present only, when DestDEV = 0xf8

 id: request identity number 1..?, corresponding

 to the original request packet id

 the request is accepted

 ChkSum: XOR on frame's all numbers

 Update: description above according to the

 http://www.gadgets.demon.co.uk/nokia21xx/protocol.html.

 Pavel Machek <pavel@ucw.cz> wrote:

 0x7e is actually registration acknowledge. Both have nothing to do

 with DestDEV, except that special device needs to be used for

 registration.

 Ack from Computer:

 { 0x00, SrcDEV, 0x7f, id, ChkSum }

 where SrcDEV: taken from response packet

 id: request identity number 1..?, corresponding

 to the response packet id

 the request is accepted

 ChkSum: XOR on frame's all numbers

 Port settings:

 Speed 9600 bps, Bits 8, ParityOdd, Stop Bits 1, DTR and RTS logic 0

 In the MBUS bus, the phone has only one connector for transmition and

 reception.

 Because of this characteristics of the phone connector, every time that the

 PC writes into the phone it is writing as well into its own Rx. So every

 time the PC sends info into the phone it finds that same information in its

 own Rx buffers, like a mirror copy. This should be discarded.

 The communications is made like an old cb radio, only one

 talking at a time. Many transmission are made this way:

 <computer sends request>

 <phone sends ack>

 <phone sends response>

 <computer sends ack>

 Some frames are sent from phone without asking for them

 You have to implement collision protocol. IE. you should listen for

 what you are transmitting, and if it does not come back, you have

 collision.

 You should wait for bus to be free for 3 miliseconds before normal

 message, and for 2.5 miliseconds before acknowledge. You should wait

 for acknowledge for 200 miliseconds, then retransmit.

 Frame format for FBUS version 1:

 { FrameID, FrameLength, MsgType, SeqNo, {block}, ChkSum }

 where FrameID: 0x01 Command frame from computer to Nokia

 0x02 ??? - Data call frame from computer to Nokia - ???

 0x03 Data call frame from Nokia to computer

 0x04 Command frame from Nokia to computer

 FrameLength: {block} + 2

 MsgType: see List

 SeqNo: Sequence number of command in case where direction is

 from ME to computer, the sequence number is

 counting from 0x30 to 0x37 and resetting back to 0x30.

Also seqnos 0x00 to 0x07 have been spotted on some

3110s (but not all, maybe different firmware revs?).

 When direction is from computer to ME,

 sequence number counts from 0x08 to 0x0f and resets back to 0x08.

 It may not be required to be this way.

 Sequence numbers are used in acknowledging commands.

 ChkSum1: CRC = 0;

 for (i = 0; i < (2 + CMD_LEN); i++)

 CRC ^= frame[i];

 Frame format for FBUS version 2/Direct IRDA:

 { FrameID, DestDEV, SrcDEV, MsgType, 0x00, FrameLength, {block}, FramesToGo,

 SeqNo, PaddingByte?, ChkSum1, ChkSum2 }

 where FrameID: 0x1c: IR / FBUS

 0x1e: Serial / FBUS

 DestDev, SrcDev: 0x00: mobile phone

 0x0c: TE (FBUS) [eg. PC]

 MsgType: see List

 FrameLength: {block} + 2 (+ 1 if PaddingByte exists)

 FramesToGo: 0x01 means the last frame

 SeqNo: [0xXY]

 X: 4: first block

 0: continuing block

 Y: sequence number

 PaddingByte: 0x00 if FrameLength would be an odd number

 anyways it doesn't exists

 ChkSum1: XOR on frame's odd numbers

 ChkSum2?: XOR on frame's even numbers

 Frame format for MBUS version 2:

 { FrameID, DestDEV, SrcDEV, MsgType, FrameLengthLO, FrameLengthHI, {block},

 SeqNo, ChkSum }

 where FrameID: 0x1f: Serial / M2BUS

 DestDev, SrcDev: 0x00: mobile phone

 0x1d: TE (M2BUS)

 0x10: TE (M2BUS) (Service Software ?)

 0x04: Carkit?

 0x48: DLR3 cable?

 0xF8: unknown target?

 0xFF: global target?

 MsgType: see List

 FrameLength: {block}

 SeqNo: sequence number

 ChkSum: XOR on frame's all numbers

 Please note that M2BUS has only one checksum: XOR on frame[FrameID..SeqNo]

 Ack:

 { FrameID, DestDEV, SrcDEV, 0x7f, Id_SeqNo, ChkSum }

 where Id_SeqNo: Is the sequence number that you are

 acknowleging (from the other part).

 Frame format for IrDA:

 { FrameID, DestDEV, SrcDEV, MsgType, FrameLengthLo, FrameLengthHi, {block} }

 where FrameID: 0x14

 DestDev, SrcDev: 0x00: mobile phone

 0x0c: TE [eg. PC]

 MsgType: see List

 FrameLength: {block}

 Frame format for Bluetooth:

 { FrameID, DestDEV, SrcDEV, MsgType, FrameLengthLo, FrameLengthHi, {block} }

 where FrameID: 0x19

 DestDev, SrcDev: 0x00: mobile phone

 0x10: TE [eg. PC]

 MsgType: see List

 FrameLength: {block}

 Frames list format:

 hex: Short description

 x msg desc { ... }

0xXX -> one byte

0xXXYY -> two bytes (== 0xXX, 0xYY)

 where hex: message type

 x: s=send (eg. to mobile), r=receive

 { ... }: data after 0x00, 0x01 header

 {+... }: raw data (without header)

Misc (about MBUS version 2):

0x4E commands:

 (sent from a 5160i TDMA / 6160i TDMA / 6185 CDMA or 7110 GSM

 phone to the uC in the DLR-3 cable)

DLR-3 req:

 1F 48 00 4E 00 02 01 XX SQ CS

 frame sent from the phone to the DLR-3 cable

 (after 15kOhm resistor detected betw. XMIC (3) and DGND (9).)

 DSR,DCD,CTS flow control data is coded into the 2nd databyte

 XX: bit.0=/CTS

 bit.1=/DCD

 bit.2=CMD/DATA

 bit.3=DSR

 bit.4-7=0

0x78 / 0x79 commands:

 (used by handsfree carkit) Works also on GSM phones (5110 / 6110 / etc)

These commands are used by the Nokia Carkits to switch the phone audio path to

XMiC and XEAR , turn the phone on/off according to the car ignition, and

control the PA loudspeaker amplifier in the carkit and the car radio mute

output which silences the car radio during a call

mute status tone:

 1F 04 00 78 00 04 01 02 0E 00 SQ CS

 status indication = disable carkit audio amplifier (no audio / no tone)

mute status tone:

 1F 04 00 78 00 04 01 02 0E 03 SQ CS

 status indication = enable carkit audio amplifier (audio / tone present)

mute status call:

 1F 04 00 78 00 04 01 02 07 00 SQ CS

 status indication = disable radio mute output (no call)

mute status call:

 1F 04 00 78 00 04 01 02 07 01 SQ CS

 status indication = enable radio mute output (call active)

enable ???:

 1F 04 00 78 00 04 01 02 08 01 SQ CS

 status indication = enable ??? sent to HFU-2 on power on

 byte 9 (07,08,0E) seems to be a pointer to a memory location,

 byte 10 is the data at this memeory location.

response from HFU:

 1F 00 04 78 00 03 02 01 03 SQ CS

 response message from HFU-2 (use unknown)

go HF and IGN on:

 1F 00 04 79 00 05 02 01 01 63 00 SQ CS

 enables carkit mode + turns phone on + req. mute status

go HF and IGN off:

 1F 00 04 79 00 05 02 01 01 61 00 SQ CS

 enables carkit mode + powers phone off (1 min delay) + req. mute status

ext. HS Offhk:

 1F 00 04 79 00 05 02 01 01 23 00 SQ CS

 enables carkit mode + external handset lifted (OFF-Hook)

ext. HS Onhk:

 1F 00 04 79 00 05 02 01 01 63 00 SQ CS

 enables carkit mode + external handset put back (ON-Hook)

 Ignition and Hook are coded into one byte

 bit.0 = 0:on power on 1:when in operation

 bit.1 = IGNITION STATUS

 bit.2 = x can be 1 or 0

 bit.3 = 0

 bit.4 = 0

 bit.5 = 1

 bit.6 = Hook (inverted)

 bit.7 = 0

HFU-2 version:

 1F 00 04 79 00 12 02 01 02 06 00 56 20 30 36 2E 30 30 0A 48 46 55 32 00 SQ CS

for HFU-2:

 1F 04 00 DA 00 02 00 02 SQ CS

 function unknown - sent from Nokia phone to HFU-2mute output (call active)

0xD0 commands:

init:

 1F 00 1D D0 00 01 04 SQ CS

 sent by the Service Software or HFU-2 on startup

init resp:

 1F 1D 00 D0 00 01 05 SQ CS

 response from phone to above frame
